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NOMENCLATURE AND NOTATION 

 

ADC Analog to Digital Converter 

CR Cognitive Radio 

FC Data Fusion Center 

PU Primary Users 

SINR Signal to Interference plus Noise Ratio 

SNR Signal to Noise Ratio 

SR Secondary Receiver 

SU Secondary User 

𝐻0 Hypothesis Test 0 

𝐻1 Hypothesis Test 1 

𝑠(𝑡) Primary Signal 

𝑛(𝑡) Noise Signal 

σ𝑛
2  Noise Variance 

𝑇𝑠 Sensing Time 

𝐵 Sensing Bandwidth 

λ Detection threshold 

𝛾 SNR from PU and Measured at CR 

𝑃𝐶𝑆
ℎ  Signal Power Transmitted from CR and Measured at SR 

𝑃𝑃
ℎ Signal Power Transmitted from PU and Measured at CR 

𝐶𝑎𝑣𝑒 Average CR Channel Capacity 

𝐸𝑡𝑜𝑡𝑎𝑙 CR Network Total Energy Consumption 
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𝑃𝑇 CR Transmission Power 

𝑃𝑆 CR Sensing Power 

𝑇𝑇 CR Tranmission Time 

𝑇𝑆 CR Sensing Time 

𝐸𝑑 CR Decision Report Signal Energy Consumption 

EC CR Circuit Energy Consumption 

𝐾 Number of Cooperative Sensing CR 

𝐷𝐹𝐶  Sum of Decision Bits from CR to DFC 

𝑃𝑒   Average Reporting Channel Error Probability 

𝑃𝑓 False Alarm Probability at Each CR 

𝑛 Decision Threshold 

S Sensed Channels 

𝑘 Number of PU That Are Active (Transmitting) 

𝑃𝑚 Misdetection Probability 

𝑃𝑚,𝑟,𝑘 Misdetection Probability for 𝑟 PUs When 𝑘 of Them Are Active 

𝑃𝑚,𝑟 Total Misdetection Probability for 𝑟 PUs at CR 

𝑄𝑓 Network False Alarm Probability 

𝑄𝑚 Network Misdetection Probability 

𝑄𝑓,𝑟 Network False Alarm Probability for 𝑟 PUs 

𝑄𝑚,𝑟,𝑘 Network Misdetection Probability When 𝑘 out of 𝑟 PUs Are Active 

∈𝑚 Network Misdetection Threshold 

∈𝑚,𝐶𝑅 Misdetection Threshold on Each CR 
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ABSTRACT 

 

 When cognitive radio (CR) operates, it starts by sensing spectrum and looking for idle 

bandwidth. There are several methods for CR to make a decision on either the channel is 

occupied or idle, for example, energy detection scheme, cyclostationary detection scheme 

and matching filtering detection scheme [1]. Among them, the most common method is 

energy detection scheme because of its algorithm and implementation simplicities [2]. There 

are two major methods for sensing, the first one is to sense single channel slot with varying 

bandwidth, whereas the second one is to sense multiple channels and each with same 

bandwidth. After sensing periods, samples are compared with a preset detection threshold 

and a decision is made on either the primary user (PU) is transmitting or not. Sometimes the 

sensing and decision results can be erroneous, for example, false alarm error and 

misdetection error may occur. In order to better control error probabilities and improve CR 

network performance (i.e. energy efficiency), we introduce cooperative sensing; in which 

several CR within a certain range detect and make decisions on channel availability together. 

The decisions are transmitted to and analyzed by a data fusion center (DFC) to make a final 

decision on channel availability. After the final decision is been made, DFC sends back the 

decision to the CRs in order to tell them to stay idle or start to transmit data to secondary 

receiver (SR) within a preset transmission time. After the transmission, a new cycle starts 

again with sensing. 

In this thesis, we find methods to maximize total energy efficiency of the cognitive 

radio network using closed form expressions, and with the consideration on misdetection 

threshold on each CR or the CR network in order to protect PU. Furthermore, we derives the 
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optimal fusion rule for DFC in order to maximize energy efficiency in a cooperative sensing 

environment. Finally compare between two difference sensing schemes and find the one 

which further maximize the energy efficiency.  

This thesis report is organized as followed: Chapter II review some of the papers on 

optimizing CR energy efficiency. In Chapter III, we study how to achieve maximal energy 

efficiency when CR senses single channel with changing bandwidth and with constrain on 

misdetection threshold in order to protect PU; furthermore, a case study is given and we 

calculate the energy efficiency. In Chapter IV, we study how to achieve maximal energy 

efficiency when CR senses multiple channels and each channel with same bandwidth, also, 

we preset a misdetection threshold and calculate the energy efficiency. A comparison will be 

shown between two sensing methods at the end of the chapter. Finally, Chapter V concludes 

this thesis.   
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CHAPTER I 

INTRODUCTION 

 

The Federal Communication Commission has allocated radio spectrum from 9 KHz 

to 275 GHz [3], and with increasing amount of wireless transceiver devices and networks, we 

will encounter difficulties in assigning and licensing new wireless users due to scarcity in 

available spectrum in the near future. On the other hand, according to a survey done in 

Dublin Ireland [14], more than 80 percent of spectrum is underutilized, and similarly for some 

major cities in the United States. Therefore, there is a low spectrum utilization rate.  

Joseph Mitola III, from Stevens Institute of Technology, foresaw this problem and 

developed the concept of cognitive radio in the late 1990s and this technology has since 

attracted much attentions among scholars all around the world. CR does not have a license 

for any radio frequency band. It accesses to channels opportunistically when the licensed user 

(PU) is not transmitting its signal. And jumps out from that channel in 2 seconds (IEEE 

802.22) after PU restarts to transmit its signal. A similar scenario is that imagine you are at a 

movie theatre on your own and you forget to purchase a ticket. You want to sit down to 

watch the movie but the theatre is full. One way to watch the movie while sitting down is to 

wait by the entrance door until someone stands up to go to use the restroom or answer an 

important phone call. Then you can run to his or her seat and sit for a while until he or she 

comes back, and you have to leave the seat and wait by the entrance for the next opportunity. 

Besides alleviating spectrum scarcity issue, CR can be used for secured communication, 

since CR search for available spectrum on itself and it is a type of frequency hopping radio, 

we can apply this technology for secured communication such as on the battlefields.  
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CHAPTER II 

LITERATURE REVIEW ON CR ENERGY EFFICIENCY  

In this chapter, we choose and review some of the papers [4] [5] [6] [7] on optimizing 

energy efficiency in cognitive radio network. Some papers are on optimizing energy 

efficiency in sensing period [4] [5], some on energy efficiency optimization in transmission 

period [6], and finally a paper on CR overall circuit energy consumption by studying the 

tradeoff between sensing and transmission of the cognitive radio [7].  

 Paper [4] proposed a method on optimizing the energy efficiency (or opportunity 

cost, as described in the paper) in sensing period of the cognitive radio network. In the paper, 

sensing period is divided into R rounds, and at each round, CR is able to make a local 

decision on either the PU is transmitting or in idle for a specific channel. Each round is 

consisted of three parts, spectrum sensing, decision report, and channel switching. Therefore, 

CR is able to sense R channels during sensing period. After all CRs report their decision to 

DFC, the DFC use a specific data fusion rule to produce a final decision on either PU is 

transmitting or not. The sensing energy efficiency is described using total energy 

consumption (sum of energy consumption in spectrum sensing, decision report and channel 

switching) divides the amount of available bandwidth found in R rounds. The metrics of 

energy efficiency is in Joule per Hz. The paper later optimized such energy efficiency with 

the consideration of preset misdetection and false alarm probability. 

 Another paper to mention on sensing energy efficiency is [5]. The authors proposed 

an energy efficiency sensing scheme by using adaptive spectrum sensing algorithm and 

sequential sensing policy [5]. The adaptive spectrum sensing algorithm was introduced since 

PU’s active and idle probability and periods can be studied [5], in order to allow CR to limit 
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sensing time and give more opportunity for transmission and reduce missed spectrum 

opportunities. On the other hand, sequential sensing policy is to constrain two error 

probability, namely false alarm probability and misdetection probability. The authors set two 

threshold for detection, λ1 and λ2. If received signal energy is greater than λ2, then CR 

decides that PU is transmitting, whereas if received signal energy is less than λ1, CR decides 

PU is not transmitting. And finally if received signal energy is between two thresholds, CR 

will collect more signal samples. By optimizing these two threshold, the paper shows that we 

can minimizing false alarm probability, which allow more transmission opportunities for CR, 

and minimizing misdetection probability below a certain threshold in order to protect PU.  

 Paper [6] introduced a method to optimize transmission energy efficiency by 

optimizing transmission duration and power allocation to each channel. First, the authors 

showed the model for energy efficiency for CR in a frame cycle, and it was a function of 

transmission duration. Then they derived the derivative of such energy efficiency with 

respect to transmission time and set the function equals to zero to find the optimal 

transmission duration. Next, the authors moved to the other topic, which is to find the 

optimal power allocation for K channels under a preset transmission power budget. By using 

gradient assisted binary search and binary search assisted ascent [8], the authors showed that 

there exist an optimal power allocation in transmission period for cognitive radio. 

 Last but not least, Paper [7] maximize the overall energy efficiency of cognitive radio 

(both in sensing and transmission periods). The authors assumed power consumption during 

sensing period is mainly caused by low noise amplifier and analog to digital converter. 

Power amplifier, low noise amplifier and analog to digital converter contributes to the power 

consumption in transmission periods. Later on, the authors showed that in order to maximize 
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energy efficiency, one should maximize sensing time, the ratio of the power consumption for 

power amplifier and analog to digital converter, bit resolution of the ADC and the input 

backoff of the power amplifier [7]. Since there is no close form expression for their energy 

efficiency expression. The authors used numerical simulation to find the maximal energy 

efficiency. 

 In general, this literature review shows that on the topic of energy efficiency 

maximization for cognitive radio network, some research has been done on energy efficiency 

maximization in sensing period, transmission period and overall energy efficiency with the 

consideration in misdetection probability but without close form expression for maximal 

energy efficiency. In this thesis work, we analyze two different sensing methods for CR at 

each sensing period: sensing single channel with changing bandwidth and sensing multiple 

channels each with same bandwidth. After this, we find the optimal fusion rule with constrain 

on misdetection probability using misdetection threshold for each sensing case. And finally, 

we simulate the performance of energy efficiency. Therefore, compare with other works on 

energy efficiency in cognitive radio network, which only maximize sensing or transmission 

energy efficiency, or maximize overall energy efficiency but without a close form 

expression; the contribution of this work is to find methods to maximize total energy 

efficiency of the cognitive radio network using closed form expressions with a misdetection 

threshold on each CR or the CR network in order to protect PU. Furthermore, we derives the 

optimal fusion rule for DFC which helps CR network to maximize its energy efficiency, and 

finally we compare between two difference sensing schemes and analyze their performance 

on maximizing energy efficiency. 
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CHAPTER III 

SENSING SINGLE CHANNEL OF VARYING BANDWIDTH 

 

Energy Detection Scheme and Error Probabilities 

In this section, we first derive the pdf and CDF of received input samples. Assume 

hypothesis test 1 (𝐻1) is when PU is transmitting its signal, hypothesis test 0 (𝐻0) is when PU 

is not transmitting its signal. Assume CR receives inputs without PU signal (𝐻0) are 

Gaussian random process with zero mean, 𝑥(𝑡) = 𝑛(𝑡):  𝒩∿(0, σ𝑛
2). And Assume CR 

received inputs with PU signal (𝐻1) present is Gaussian random process with nonzero 

mean 𝑥(𝑡) = 𝛼 ∙ 𝑠(𝑡) + 𝑛(𝑡): 𝒩∿(μ𝑠, σ𝑛
2). With some channel fading factor 𝛼. 

𝑥(𝑡) =  {
𝛼 ∙ 𝑠(𝑡) + 𝑛(𝑡)  𝐻1
𝑛(𝑡)                     𝐻0

                                                                                                           (𝟏. 𝟏) 

According to Claude Shannon’s sampling theorem [9], for a signal with bandwidth 𝐵 

and is sampled in a time 𝑇𝑠, we need 2𝑇𝑠𝐵 samples in order to acquire knowledge of the 

received signal completely. The sampled signals are: 

𝑥(𝑡)′ = 

{
 
 

 
 
∑(𝛼 ∙ 𝑠𝑖

2𝑇𝑠𝐵

𝑖=1

(𝑡) + 𝑛𝑖(𝑡))  𝐻1 

∑ 𝑛𝑖(𝑡)

2𝑇𝑠𝐵

𝑖=1

                          𝐻0

                                                                                         (𝟏. 𝟐) 

Assume noise is additive white Gaussian noise with zero mean and variance σ𝑛
2 , and 

each sample is a random variable with zero mean and variance σ𝑖,𝑛
2 = σ𝑛

2 , we divide every 

samples by noise standard deviation σ𝑛; then the normalized noise sample has distribution 

of 𝒩∿(0,1). For energy detection, we square and sum each received signal sample with unit 

variance, and result a sum of the squares of 2𝑇𝑆𝐵 i.i.d random variables: 
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𝑦(𝑡) =  

{
 
 

 
 
∑ (

𝛼 ∙ 𝑠𝑖(𝑡) + 𝑛𝑖(𝑡)

σ𝑛
)

22𝑇𝑠𝐵

𝑖=1

  𝐻1 

∑(
𝑛𝑖(𝑡)

σ𝑛
)2

2𝑇𝑠𝐵

𝑖=1

                       𝐻0

                                                                                      (𝟏. 𝟑) 

For 𝐻0, we have squares of 2𝑇𝑠𝐵 standard normalized Gaussian random variables, 

each with zero mean and unit variance. Therefore, it follows central chi-squared distribution 

with 2𝑇𝑠𝐵 degrees of freedom. The pdf of such distribution according to reference [10] is: 

𝑓𝑌(𝑦, 𝐻0) =  
1

2𝑇𝑠𝐵𝛤(𝑇𝑆𝐵)
𝑦𝑇𝑠𝐵−1𝑒−

𝑦
2                                                                                             (𝟏. 𝟒) 

The complimentary CDF of the distribution at point λ is the false alarm probability [10]: 

𝑃𝑓 = 1 − 𝐹𝑌(λ,𝐻0) =  
𝛤(𝑇𝑠𝐵,

λ
2)

𝛤(𝑇𝑠𝐵)
                                                                                                  (𝟏. 𝟓) 

In which 𝛤(. ) is gamma function and 𝛤(. , b) is upper incomplete gamma function at 

point b. In the case of PU transmitting, Assume primary signal and noise are independent. 

Sampled normalized signals have means of μ𝑠 = μ𝑠,𝑖 =
1

2𝑇𝑠𝐵
∑ (

𝛼∙𝑠𝑖(𝑡)

σ𝑛
)

2𝑇𝑠𝐵
1   and variances 

of  0. Then the received inputs are normal distributed 𝒩∿(μ𝑠, 1). Which follows non-central 

chi-squared distribution with 2𝑇𝑠𝐵 degrees of freedom. And the pdf of such distribution is:  

𝑓𝑌(𝑦, 𝐻1) =
1

2
𝑒−

𝑦+𝜑
2 (

𝑦

𝜑
)

𝑇𝑠𝐵−1
2
𝐼𝑇𝑠𝐵−1(√𝜑y)                                                                              (𝟏. 𝟔) 

In which 𝜑 is the non-centrality parameter and 𝐼𝑎−1(√𝑏 ∙ 𝑐) is the modified Bessel’s function.  

We have the misdetection probability (𝑃𝑚) of each CR according to reference [10]: 

𝑃𝑚 = 1 − 𝑄𝑇𝑠𝐵(√2𝛾, √λ)                                                                                                                (𝟏. 𝟕) 

In which 𝑄𝑎(√𝑏, √𝑐) is Marcum-Q function and 𝛾 is SNR from PU and measured at 

CR. For now, we have derived pdf and CDF of received input samples. In detection theory, 
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we always measure the performance of detector using false alarm probability (probability of 

CR decides PU is transmitting, given PU is actually not transmitting: 𝑃𝑓 = 𝑃(𝐻1̂|𝐻0); and 

misdetection probability (probability of CR decides PU is not transmitting, given PU is 

actually transmitting: 𝑃𝑚 = 𝑃(𝐻0̂|𝐻1)). Accordingly, given a preset detection threshold λ for 

2𝑇𝑠𝐵 samples, which CR decides PU is transmitting if the sum of received signal power is 

above the threshold, and decides PU is idle if the sum is below λ, we can easily find out 𝑃𝑓 

and 𝑃𝑚 for each CR using CDF derived in equations (1.5) and (1.7).  

{
 

 
𝑃𝑓 = P(y > λ|𝐻0) = 1 − 𝐹𝑌(λ, 𝐻0) =  

𝛤(𝑇𝑠𝐵,
λ
2)

𝛤(𝑇𝑠𝐵)
          

𝑃𝑚 = P(y < λ|𝐻1) = 1 − 𝑄𝑇𝑠𝐵(√2𝛾, √λ)                       

                                                        (𝟏. 𝟖) 

 

Network Channel Capacity and Energy Efficiency 

In this section, we want to finally derive energy efficiency (bits per Joule) of the CR 

network. But first, we calculate transmission capacity of CR under correct detection 

(𝐻0, 𝐻0̂) and misdetection (𝐻1, 𝐻0̂); given sensing bandwidth W, detection threshold  λ, 

amount of CRs and other parameters. 

  Assume the signal power transmitted to SR from CR, and measured at SR is 𝑃𝐶𝑆
ℎ  with 

channel gain ℎ. Assume sensing bandwidth is 𝐵 and noise spectrum power is 𝑁0. CR 

transmission channel capacity of correct detection is: 

𝐶𝑑 = 𝐵𝑙𝑜𝑔2 (1 +
𝑃𝐶𝑆
ℎ

𝑁0𝐵
) 

Given the probability of CR transmission under this condition is  𝑃(𝐻0, 𝐻0̂) 

= 𝑃(𝐻0̂|𝐻0)𝑃(𝐻0), the weighted transmission capacity of correct detection is therefore: 
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𝐶𝑑(𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑) = 𝐵𝑙𝑜𝑔2 (1 +
𝑃𝐶𝑆
ℎ

𝑁0𝐵
)𝑃(𝐻0̂|𝐻0)𝑃(𝐻0)                                                                  (𝟏. 𝟗) 

Similarly, the transmission capacity of misdetection is: 

𝐶𝑚𝑑 = 𝐵𝑙𝑜𝑔2 (1 +
𝑃𝐶𝑆
ℎ

𝑁0𝐵 + 𝑃𝑃
ℎ) 

  In which 𝑃𝑃
ℎ is signal power from PU measured at secondary network (CR-SU 

network) and 𝑔 is the channel gain from PU to secondary network. Probability of 

transmission under misdetection is 𝑃(𝐻1, 𝐻0̂) = 𝑃(𝐻0̂|𝐻1)𝑃(𝐻1). The weighted transmission 

capacity of misdetection is: 

𝐶𝑚𝑑(𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑) = 𝐵𝑙𝑜𝑔2 (1 +
𝑃𝐶𝑆
ℎ

𝑁0𝐵 + 𝑃𝑃
ℎ)𝑃(𝐻0̂|𝐻1)𝑃(𝐻1)                                                  (𝟏. 𝟏𝟎) 

Assume in cooperative sensing case, 𝑄𝑓 is network false alarm probability and 𝑄𝑚 is 

network misdetection probability, we have 𝑃(𝐻0̂|𝐻0) = (1 − 𝑄𝑓), and 𝑃(𝐻0̂|𝐻1) = 𝑄𝑚, and 

the average CR channel capacity is: 

𝐶𝑎𝑣𝑒 = 𝐵 [𝑙𝑜𝑔2 (1 +
𝑃𝐶𝑆
ℎ

𝑁0𝐵
)(1 − 𝑄𝑓)𝑃(𝐻0) + 𝑙𝑜𝑔2 (1 +

𝑃𝐶𝑆
ℎ

𝑁0𝐵 + 𝑃𝑃
ℎ)𝑄𝑚𝑃(𝐻1)]         (𝟏. 𝟏𝟏) 

Next, we give the energy consumption of CR network. The total energy consumption 

of the network in one frame cycle is: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑇𝑇𝑇 + (𝑃𝑆𝑇𝑆 + 𝐸𝑑 + EC)𝐾                                                                                         (𝟏. 𝟏𝟐) 

Equation (1.12) shows the total energy consumption of cooperative sensing CR 

network, 𝑃𝑆 is sensing power; 𝑇𝑆 is sensing time; 𝑃𝑇𝑇𝑇 is transmission energy from CR to 

SR. 𝐸𝑑 is one bit decision report signal energy from every CR to DFC; and finally 𝐸𝐶 is 

circuit energy consumption of CR. Hence; average energy efficiency in bits per watt is: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑇𝐶𝑎𝑣𝑒
𝐸𝑡𝑜𝑡𝑎𝑙

                                                                                 (𝟏. 𝟏𝟑) 
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In the next section, we look at some famous data fusion rules such as AND fusion 

rule and OR fusion rule; then we show the fusion rule that can achieve maximal energy 

efficiency given preset misdetection threshold, in order to protect PU. 

 

Cooperative Sensing and Data Fusion Rules 

In the first section, we derived probability of false alarm and misdetection of each CR 

during sensing period. Next, we discuss about different data fusion rules and network false 

alarm and misdetection probability. 

Assume there are K CRs nearby which are able to join cooperative sensing network 

(Fig.1), and each CR sends one bit decision 𝐾𝑖 (𝑖 = 1,2, … , 𝐾; 𝐾𝑖 = 0 𝑜𝑟 1) to DFC. The 

DFC receives Kk binary decisions and then make a final decision using these binary data. 

Assume decision threshold is 𝑛, and summation of received bits add up to be 𝐷𝐹𝐶 . If the 

summation of the received bits is less than decision threshold 𝑛, DFC decides PU is not 

transmitting. If the summation of the received bits is greater than or equals to decision 

threshold 𝑛, the DFC decides PU is transmitting. We have: 

𝐷𝐹𝐶 =

{
 
 

 
 ∑𝐾𝑖

𝐾

𝑖=1

< 𝑛,          ℋ0

∑𝐾𝑖

𝐾

𝑖=1

≥ 𝑛,          ℋ1

                                                                                                       (𝟏. 𝟏𝟒) 

 

 

Figure 1.1 a: CR Cooperative Sensing Network Diagram 
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Figure 1.1 b: CR Cooperative Sensing Network Schematics 

   From previous studies on data fusion rules introduced in [10] and [11], we generalize 

following commonly used fusion rules:  

‘OR’ Fusion Rule 

   The one bit data sent from each CR to DFC can be either 0 (PU idle) or 1 (PU 

transmitting). ‘OR’ fusion rule allows DFC to make final decisions of PU is transmitting if 

one or more CR out of Kk CRs decide(s) PU is transmitting [10]. Assume 𝑄𝑓 and 𝑄𝑚 are the 

false alarm and misdetection probability in DFC’s final decisions; we have: 

{
  
 

  
 
𝑄𝑓 = 1 −∏(1 − 𝑃𝑓,𝑖)

𝐾

𝑖=1

= 1 −∏(1−
𝛤 (𝑇𝑠𝑊,

λ
2)

𝛤(𝑇𝑠𝑊)
)

𝐾

𝑖=1

𝑄𝑚 =∏(𝑃𝑚,𝑖)

𝐾

𝑖=1

=∏(𝑄𝑇𝑠𝑊(√2𝛾, √λ ))

𝐾

𝑖=1

                       

                                                     (𝟏. 𝟏𝟓) 

Assume reporting channel from each CR to DFC is also fading channel with error 

probability 𝑃𝑒,𝑖 (imperfect reporting channel), and reporting errors in all channels are 

identical and independent. Then we have 𝑃𝑒,𝑖 (for i = 1,2, … , K) = 𝑃𝑒(Average reporting 

channel error probability) and assume each CR has same 𝑃𝑓 and 𝑃𝑚: 

𝑙𝑒𝑡 {
𝑃𝑓
𝑒 = 𝑃𝑓(1 − 𝑃𝑒) + 𝑃𝑒(1 − 𝑃𝑓)

𝑃𝑚
𝑒 = 𝑃𝑚(1 − 𝑃𝑒) + 𝑃𝑒(1 − 𝑃𝑚)
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 𝑤𝑒 ℎ𝑎𝑣𝑒 {
𝑄𝑓 = 1 − (1 − 𝑃𝑓

𝑒)𝐾

𝑄𝑚 = (𝑃𝑚
𝑒)𝐾               

                                                                                              {
𝑄𝑓 = 1 − [ (1 − 𝑃𝑓) ∙ (1 − 𝑃𝑒) + 𝑃𝑒 ∙ 𝑃𝑓]

𝑘

𝑄𝑚 = [ 𝑃𝑚 ∙ (1 − 𝑃𝑒) + 𝑃𝑒 ∙ (1 − 𝑃𝑚)]
𝑘     

     (𝟏. 𝟏𝟔) 

‘AND’ Fusion Rule 

‘AND’ fusion rule allows DFC to make final decisions of PU is transmitting if and 

only if all of the CRs decide(s) PU is transmitting. If even one CR decides PU is idle, the 

DFC will make a final decision that PU is idle [10]. ‘AND’ fusion rule is described below: 

  {
𝑄𝑓 = (𝑃𝑓

𝑒)𝐾                       

𝑄𝑚 = 1 − (1 − 𝑃𝑚
𝑒)𝐾     

                          {
𝑄𝑓 = [ 𝑃𝑓 ∙ (1 − 𝑃𝑒) + 𝑃𝑒 ∙ (1 − 𝑃𝑓)]

𝑘
               

𝑄𝑚 = 1 − [ (1 − 𝑃𝑚) ∙ (1 − 𝑃𝑒) + 𝑃𝑒 ∙ 𝑃𝑚]
𝑘     

                                                                                     (𝟏. 𝟏𝟕) 

𝒏 Out of 𝑲 Fusion Rule 

   When the amount of CRs that join cooperative sensing is 𝐾, and decision threshold 

is 𝑛, we have the general expression of the network false alarm and misdetection probability 

for 𝑛 out of 𝐾 fusion rule as described in equation (1.18): 

 

{
  
 

  
 
𝑄𝑓 =∑(

𝐾
𝑙 )

𝐾

𝑙=𝑛

(𝑃𝑓
𝑒
)
𝑙
∙ (1−𝑃𝑓

𝑒
)
𝐾−𝑙
           

𝑄𝑚 = 1−∑ (
𝐾
𝑙 )

𝐾

𝑙=𝑛

(1−𝑃𝑚
𝑒
)
𝑙
∙ (𝑃𝑚

𝑒
)
𝐾−𝑙
 

                                                                                      (𝟏.𝟏𝟖) 

Which OR fusion rule is equivalent as letting 𝑛 = 1 in equation (1.18), and AND 

fusion rule is same as letting 𝑛 = 𝐾 in equation (1.18). 

 

Study on AND Fusion Rule with Constrain on Misdetection Probability 

Among above fusion rules, we want to find the one which gives maximal energy 

efficiency. According to equation (1.13), given the number of coop CR, we want to minimize 

false alarm probability while maximize misdetection probability in order to maximize energy 

efficiency. According to the general equations for 𝑄𝑓 and 𝑄𝑚 given in equation (1.18), we 

have:  
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{
 
 

 
 𝑄𝑓,(𝑛=𝐾) =∑(

𝐾

𝑙
)

𝐾

𝑙=𝐾

(𝑃𝑓
𝑒)
𝑙
(1 − 𝑃𝑓

𝑒)
𝐾−𝑙

= (𝑃𝑓
𝑒)
𝐾
    𝑓𝑜𝑟 𝑛 = 𝐾

𝑄𝑓,(𝑛<𝐾) = (𝑃𝑓
𝑒)
𝐾
+∑ (

𝐾

𝑙
)

𝐾−1

𝑙=𝑛

(𝑃𝑓
𝑒)
𝑙
(1 − 𝑃𝑓

𝑒)
𝐾−𝑙
   𝑓𝑜𝑟 𝑛 < 𝐾

                                        (𝟏. 𝟏𝟗) 

  Clearly, 𝑄𝑓,(𝑛<𝐾) is always greater than 𝑄𝑓,(𝑛=𝐾), since the second term on the right 

side of equation for 𝑄𝑓,(𝑛<𝐾) is always greater than 0 (for nonzero false alarm probability at 

each CR). Therefore, for given K, in order to minimize false alarm probability, we should use 

‘AND’ fusion rule, in which decision threshold is equal to number of coop CRs.  

   Next, we want to maximize misdetection probability: 

{

𝑄𝑚,(𝑛=𝐾) = 1 − (1 − 𝑃𝑚
𝑒)𝐾                                                            𝑓𝑜𝑟 𝑛 = 𝐾

𝑄𝑚,(𝑛<𝐾) = 1 − (1 − 𝑃𝑚
𝑒)𝐾 −∑ (

𝐾

𝑙
)

𝐾−1

𝑙=𝑛

(1 − 𝑃𝑚
𝑒)𝑙(𝑃𝑚

𝑒)𝐾−𝑙      𝑓𝑜𝑟 𝑛 < 𝐾
                        (𝟏. 𝟐𝟎) 

Clearly, 𝑄𝑚,(𝑛<𝐾) is always less than 𝑄𝑚,(𝑛=𝐾), since the third term on the right side 

of equation for  𝑄𝑚,(𝑛<𝐾) is always greater than 0 (for nonzero misdetection probability at 

each CR). In conclusion, for given K, in order to maximize misdetection probability, we 

should let 𝑛 = 𝐾, which is equivalent as using ‘AND’ fusion rule. 

Furthermore, Figure 1.2 below shows the decrease of false alarm probability and 

increase of misdetection probability as the number of CRs increase; by setting 𝑃𝑚
𝑒 = 𝑃𝑓

𝑒 =

0.01. In real applications, we want to transmit using maximal energy efficiency with preset 

threshold for misdetection probability ∈𝑚, in order to protect PU. Next, we study how to 

achieve maximal energy efficiency using AND fusion rule given ∈𝑚. 
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Figure 1.2: False Alarm Probability and Misdetection Probability 

 According to equation (1.17), in order to let the network misdetection probability less 

than or equal to ∈𝑚, misdetection probability at each CR should satisfy: 

{
∈𝑚≥ 𝑄𝑚 = 1 − (1 − 𝑃𝑚

𝑒)𝐾

𝑃𝑚
𝑒 ≤ 1 − (1 −  ∈𝑚)

(
1
𝐾
)      

                                                                                                        (𝟏. 𝟐𝟏) 

 From page 8 we have: 

𝑃𝑚 =
𝑃𝑚
𝑒 − 𝑃𝑒
1 − 2𝑃𝑒

≤
1 − (1 −  ∈𝑚)

(
1
𝐾
) − 𝑃𝑒

1 − 2𝑃𝑒
                                                                                  (𝟏. 𝟐𝟐) 

 And also from equation (1.7), we have  

𝑃𝑚 = 1 − 𝑄𝑇𝑠𝐵(√2𝛾,√λ) = 𝑛𝑐𝑥2𝑐𝑑𝑓(λ, TS𝐵, TS𝐵𝛾)                                                           (𝟏. 𝟐𝟑)  

In which  

𝑛𝑐𝑥2𝑐𝑑𝑓(a, 𝑏, 𝑐) =∑ (
(
1
2 𝑐)

𝑗

𝑗!
𝑒−

𝑐
2)Pr[𝑥𝑏+2𝑗

2 ≤ 𝑥]
∞

𝑗=0
                                                   (𝟏. 𝟐𝟒)  
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Equation (1.24) computes the non-central chi square cumulative distribution function 

at a, using degrees of freedom 𝑏 and non-centrality parameter 𝑐 [12]. And 𝑃𝑚 increases as λ 

increases. Next, according to [13] we have: 

λ = 𝑛𝑐𝑥2𝑖𝑛𝑣(𝑃𝑚, TS𝐵, TS𝐵𝛾)                                                                                                     (𝟏. 𝟐𝟓)  

Which 𝑛𝑐𝑥2𝑖𝑛𝑣(𝑃𝑚, TS𝐵, TS𝐵𝛾) is inverse non-central chi square cumulative 

distribution function. Notice that λ increases as 𝑃𝑚 increases. Therefore; by substituting 𝑃𝑚 

with right hand side of equation (1.18) we have: 

λ ≤ 𝑛𝑐𝑥2𝑖𝑛𝑣 (
1 − (1 −∈𝑚)

(
1
𝐾
) − 𝑃𝑒

1 − 2𝑃𝑒
, TS𝐵, TS𝐵𝛾)                                                              (𝟏. 𝟐𝟔)  

Furthermore, in equation (1.5), false alarm probability decreases as detection 

threshold λ increases (in which 1 − 𝑃𝑓 increases as λ increases). Therefore, in AND fusion 

rule, in order to minimize false alarm probability and maximize misdetection probability at 

each CR while ensuring misdetection probability is below preset misdetection threshold ∈𝑚, 

we should maximize detection threshold λ and the maximal value is: 

λ𝑚𝑎𝑥 = 𝑛𝑐𝑥2𝑖𝑛𝑣 (
1 − (1 −  ∈𝑚)

(
1
𝐾
) − 𝑃𝑒

1 − 2𝑃𝑒
, TS𝐵, TS𝐵𝛾)                                                      (𝟏. 𝟐𝟕) 

For now, we have learned how to maximize energy efficiency, which is to use AND 

fusion rule, and derived the optimal detection threshold in order to maximize energy 

efficiency while ensuring misdetection probability is below misdetection threshold, in order 

to protect PUs. Next, we provide a case study and calculate the maximal energy efficiency.  

 

 
Figure 1.3: Flow Chart on Steps to Calculate Energy Efficiency 
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Case Study: Maximal Energy Efficiency Using AND Fusion Rule with 

      Misdetection Threshold 

Setting-up the Parameters 

Table 1.1: Spectrum Occupancy in Dublin, Ireland [14] 

 
 

Table 1.1 is from the survey of spectral occupancy in Dublin, Ireland [14]. In the 

survey, the available bandwidth is divided into 31 slots, from 30MHz to 3GHz. According to 

the data, we first calculate the average spectral occupancy and set 1MHz as one unit of 

channel bandwidth and unit increment:  

∑ (𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖 ∙ %𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑖)
31
𝑖=1

𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑀𝐻𝑧)
= 14.47%                                                                     (𝟏. 𝟐𝟖) 
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Therefore, the average 1MHz spectral active probability 𝑃(𝐻1) is 14.47%, and 

spectral idle probability 𝑃(𝐻0) is 85.53%. 

Assume noise spectrum power 𝑁0 = 10
−12𝑊𝑎𝑡𝑡/𝐻𝑧, received PU power 𝑃P

ℎ = 10−6 

Watt. Assume BPSK modulation is used for decision reports from each CR to DFC, and we 

choose to implement a low power consumption XTend transceiver [15] for CR to transmit its 

signals. This type of transceiver operates at frequency range of 902-928MHz, and it is 

compatible for DigiMeshTM networking topology. We set 9.6Kb/s as transmission rate in 

order to minimize reporting channel error probability since it is the minimal transmission 

rate, and set transmission power from CR to FC (𝑃𝑑) and transmission power from CR to SR 

to be 1W, or 30dBm. Therefore, we have bit energy 𝐸𝐷 = 0.104mJ. Furthermore, according 

to survey on path loss in German cities shown in Figure 1.4, we choose the pass loss 

exponent to be 2.7. Assume all the CRs are at 50 meters away from FC, and SR is 200 meters 

away from CR. we have decision report error probability as: 

𝑃𝑒 = 𝑄(√
2 ∙ 𝑃𝑑
𝑁0 ∙ 𝑊

) = 𝑄(√
2 ∙ 𝑃𝑑 ∙ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒−2.7

𝑁0 ∙ 𝑊
)                                                              (𝟏. 𝟐𝟗) 

                       = 𝑄(√
2 ∙ 1 ∙ 50−2.7

10−12 ∙ 2600,000
) ≈ 4.08 × 10−6 

According to Figure 1.5 from [16], which shows the relation between power 

consumption and sampling rate of analog to digital converter (ADC), and since most of the 

sensing power is consumed by ADC, we can approximate sensing power consumption using 

power consumption of ADC. When samples are in 𝑁 bits and 𝑓𝑆 = 2𝐵, Sensing power can be 

therefore described as: 

𝑃𝑆 = 𝑁 × 0.0028 × (
2𝐵

103
)
1.0227

(μ𝑊)                                                                                     (𝟏. 𝟑𝟎) 
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Figure 1.4: Path Loss vs Distance in German Cities [17] 

 

Figure 1.5: ADC Power Consumption vs Sampling Rate [16] 

 

Simulation Results Using AND Fusion Rule with Different Misdetection Threshold  

        All simulations and plots in the thesis use the parameters given below, unless otherwise 

mentioned in the plots caption.  
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Table 1.2: Summary of Parameters 

Parameters Parameter Value Note 

𝑃(𝐻0) 
85.53% Average spectral idle probability in Dublin Ireland [11] 

𝑃(𝐻1) 
14.47% Average spectral occupied probability in Dublin Ireland [11] 

𝑃𝑒 
4.08 × 10−6 Reporting channel error probability (from CR to DFC) 

𝑁0 
1 × 10−12 Noise power spectral density 

Path Loss 

Exponent 

2.7 Found in path loss vs distance in German cities [17] 

PP
ℎ 

1 × 10−6 Watt Received PU signal power measured at CR 

PCS 
1 Watt CR transmission power to DFC and SR (30dBm) 

PS 12 × 0.0028 × (
2𝐵

103
)
1.0227

 
CR sensing power consumption (ADC power consumption) 

𝑇𝑠  
10µS CR sensing time 

𝑇𝑇  
1 − 𝑇𝑠  CR transmission time 

B0 

100KHz Bandwidth for each channel when CR senses multiple channels 

𝐸𝑑 
104µWatt Decision report transmission energy consumption 

𝐸𝐶  
2.5 × 10−5 CR circuit energy consumption in one frame cycle 

𝑑𝐶𝑆 
200 meters Distance between CR and secondary receiver (SR) 

N 
12 Number of bits for ADC to scale the samples 

 

As shown above in Figure 1.6 a, X-axis is the number of cooperative sensing CRs, Y-

axis is sensing bandwidth in hertz, and Z-axis (illustrated in color) is energy efficiency. There 

exist maximal energy efficiency in AND fusion rule with a preset misdetection threshold 

(labeled in each subplot). In the simulation, we found out as we increase misdetection 

threshold, we can achieve higher maximal energy efficiency. The optimal number of CR 

decreases and optimal sensing bandwidth increases as misdetection threshold increases. 
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Figure 1.6 a: Energy Efficiency (Z-axis) vs Number of CR (X-axis) vs Sensing Bandwidth (Y-

axis) Using AND Fusion Rule with Different ∈𝑚 

 

 

Figure 1.6 b: Energy Efficiency vs Number of CR Using AND Fusion Rule (B=1MHz) 
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Next, we let the primary user active probability 𝑃(𝐻1) as a variable, and find optimal 

number of coop CR for given different 𝑃(𝐻1). Finally, we plot the relation between 𝑃(𝐻1) 

and optimal number of coop CR. We set misdetection threshold to 0.1 and sensing bandwidth 

to 1MHz. 

 
Figure 1.6 c: Energy Efficiency vs Number of CR with Changing 𝑃(𝐻1) ( ∈m= 0.1) 

 

As we can see from above, energy efficiency increases as we decreases 𝑃(𝐻1). 
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CHAPTER IV 

SENSING MULTIPLE CHANNELS OF SAME BANDWIDTH 

 

In this chapter, we study energy efficiency in CR networks when CR senses multiple 

channels and each channel with same bandwidth. We can visualize this problem by assuming 

there are several PUs nearby and each of them uses its own channel with no overlap with 

each other. CR senses multiple channels each with same bandwidth instead of single channel 

with changing bandwidth. For simplicity, we assume each channel has same bandwidth. 

 

One Cognitive Radio with Two Primary Users 

Assuming there are 2 PUs nearby, and each which probability of transmission 

𝑃(𝐻1) = 0.145 and probability of idle (no transmission) 𝑃(𝐻0) = 1 − 𝑃(𝐻1) = 0.855  

 

Figure 2.1: CR Network with 1 CR and 2 PUs 

The tradeoff between number of PUs and CR transmission bandwidth can be 

described as below: when CR increases its sensing and transmission bandwidth, the network 

will have an increase of data transmission rate as described in paper [18]. However, increasing 

CR bandwidth will inevitably causing collision with PU’s transmission. Figure 2.2 illustrated 

this scenario: 
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Figure 2.2: CR Transmission Interfere with Primary Transmissions 

         As shown in Fig.2, assume PU use different channels and as CR transmission 

bandwidth increases, the transmission bandwidth of CR intersects (overlaps) with primary 

transmission bandwidth. 

         Next, we look at misdetection probability. In general, we have misdetection probability 

described as: 

𝑃𝑚 = 𝑃(ℋ0 ̂ |ℋ1) =
𝑃(ℋ0̂,ℋ1)

𝑃(ℋ1)
                                                                                                    (𝟐. 𝟏) 

        As shown in equation (2.1), ℋ0 is when PU is inactive (idle) and ℋ1 is when PU is 

active (busy). Then, we extend this representation for 2 PUs present: 𝐻00 means when PU1 

and PU2 are both idle, 𝐻01 is when PU1 is idle while PU2 is active. And so on for 𝑆 PUs, in 

which the representation of their activity is described in form of 𝐻01…10, as we will discuss in 

the next section. When there are two PUs, we have misdetection probability: 

𝑃𝑚,2 = 𝑃(ℋ0 ̂ |ℋ1) =
𝑃(ℋ0̂,ℋ1)

𝑃(ℋ1)
 

=
𝑃(ℋ0̂⋂ℋ1)

𝑃(ℋ1)
=
𝑃(ℋ0̂⋂(𝐻01 ∪ 𝐻10 ∪ 𝐻11)

𝑃(ℋ1)

=
𝑃(ℋ0̂⋂𝐻01) + 𝑃(ℋ0̂⋂𝐻10) + 𝑃(ℋ0̂⋂𝐻11) − 𝑃(ℋ0̂⋂𝐻01⋂𝐻10)

𝑃(ℋ1)

−
𝑃(ℋ0̂⋂𝐻01⋂𝐻11) + 𝑃(ℋ0̂⋂𝐻10⋂𝐻11) − 𝑃(ℋ0̂⋂𝐻01⋂𝐻10⋂𝐻11)

𝑃(ℋ1)
                             (𝟐. 𝟐𝒂) 
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We assume primary users’ transmissions are independent from each other’s with 

disjoint channels and same bandwidth B0; and since 𝐻01, 𝐻10 and 𝐻11 are mutually exclusive 

events, we have: 𝑃(𝐻01⋂𝐻10) = 𝑃(𝐻01⋂𝐻11) = 𝑃(𝐻10⋂𝐻11) = 0, and eventually 

 𝑃𝑚,2 =
𝑃 ((ℋ0̂⋂𝐻01) + (ℋ0̂⋂𝐻10) + (ℋ0̂⋂𝐻11))

𝑃(ℋ1)
                                                            (𝟐. 𝟐𝐛) 

Furthermore, we have: {

𝑃(ℋ0̂⋂𝐻01) = 𝑃(ℋ0̂|𝐻01)𝑃(𝐻01)

𝑃(ℋ0̂⋂𝐻10) = 𝑃(ℋ0̂|𝐻10)𝑃(𝐻10)

𝑃(ℋ0̂⋂𝐻11) = 𝑃(ℋ0̂|𝐻11)𝑃(𝐻11)

    and we adopt following 

notations:    

{

𝑃(ℋ0̂|𝐻01) = 𝑃𝑚,01             𝑚𝑖𝑠𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤ℎ𝑒𝑛 𝑃𝑈1 𝑖𝑠 𝑖𝑑𝑙𝑒 𝑎𝑛𝑑 𝑃𝑈2 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒

𝑃(ℋ0̂|𝐻10) = 𝑃𝑚,10             𝑚𝑖𝑠𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤ℎ𝑒𝑛 𝑃𝑈1 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑃𝑈2 𝑖𝑠 𝑖𝑑𝑙𝑒

𝑃(ℋ0̂|𝐻11) = 𝑃𝑚,11             𝑚𝑖𝑠𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑤ℎ𝑒𝑛 𝑃𝑈1 𝑎𝑛𝑑 𝑃𝑈2 𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑒

 

In which𝑃𝑚,01 means PU 1 is idle and PU 2 is active. Then the misdetection 

probability when there are 2 PU can be expressed as:  

𝑃𝑚,2 =
𝑃(ℋ0̂|𝐻01)𝑃(𝐻01) + 𝑃(ℋ0̂|𝐻10)𝑃(𝐻10) + 𝑃(ℋ0̂|𝐻11)𝑃(𝐻11)

𝑃(𝐻01) + 𝑃(𝐻10) + 𝑃(𝐻11)

=
𝑃𝑚,01𝑃(𝐻01) + 𝑃𝑚,10𝑃(𝐻10) + 𝑃𝑚,11𝑃(𝐻11)

𝑃(𝐻01) + 𝑃(𝐻10) + 𝑃(𝐻11)
                                                                      (𝟐. 𝟐𝒄) 

For misdetection probability, we have from equation (1.7) with bandwidth 𝐵0: 

𝑃𝑚 = 1 − 𝑃𝑑 = 1 − 𝑄𝑇𝑆𝐵0(√2𝛾,√λ)                                                                                            (𝟐. 𝟑)                                                                                

         In which γ is SNR from primary user and received at CR; λ is detection threshold and 

𝑇𝑆 is sensing time. In the case when there are 2 PUs, we have different SNR from PU to CR, 

depend on how many of the PU is active: 
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{
  
 

  
 γPC01 =

PP
ℎ

2𝑁0𝐵0
(𝑆𝑁𝑅 𝑓𝑟𝑜𝑚 𝑃𝑈, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝐶𝑅;𝑤ℎ𝑒𝑛 𝑃𝑈1 𝑖𝑠 𝑖𝑑𝑙𝑒 𝑎𝑛𝑑 𝑃𝑈2 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒)

γPC10 =
PP
ℎ

2𝑁0𝐵0
(𝑆𝑁𝑅 𝑓𝑟𝑜𝑚 𝑃𝑈, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝐶𝑅;𝑤ℎ𝑒𝑛 𝑃𝑈1 𝑖𝑠 𝑖𝑑𝑙𝑒 𝑎𝑛𝑑 𝑃𝑈2 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒)

γPC11 =
2PP

ℎ

2𝑁0𝐵0
(𝑆𝑁𝑅 𝑓𝑟𝑜𝑚 𝑃𝑈, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝐶𝑅;𝑤ℎ𝑒𝑛 𝑏𝑜𝑡ℎ 𝑃𝑈 𝑎𝑟𝑒 𝑎𝑐𝑡𝑖𝑣𝑒)                     

 

In which PP
ℎ is transmission power from PU and measured at CR. The misdetection 

probability described in equation (2.2) can be detailed into: 

𝑃𝑚,2 =
𝑃𝑚,01𝑃(𝐻01) + 𝑃𝑚,10𝑃(𝐻10) + 𝑃𝑚,11𝑃(𝐻11)

𝑃(𝐻01) + 𝑃(𝐻10) + 𝑃(𝐻11)
=
𝑃(𝐻0)𝑃(𝐻1)(𝑃𝑚,01 + 𝑃𝑚,10) + 𝑃(𝐻1)

2𝑃𝑚,11
1 − 𝑃(𝐻0)

2

=
𝑃(𝐻0)𝑃(𝐻1)[1 − 𝑄2𝑇𝑆𝐵0(√2𝛾𝑃𝐶01, √𝜆) + 1 − 𝑄2𝑇𝑆𝐵0(√2𝛾𝑃𝐶10, √𝜆)] + 𝑃(𝐻1)

2 (1 − 𝑄2𝑇𝑆𝐵0(√2𝛾𝑃𝐶11, √𝜆))

1 − 𝑃(𝐻0)
2

 

                                                                                                                    (𝟐. 𝟒) 

And false alarm probability 𝑃𝑓 for 2 PU is: 

𝑃𝑓,2 =
𝛤(2𝑇𝑠𝐵0,

λ
2)

𝛤(2𝑇𝑠𝐵0)
                                                                                                                          (𝟐. 𝟓) 

 

Channel Capacities and Energy Efficiency with Two PUs 

Total Channel Capacity can be derived as below: 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

=  2𝐵0 log(1 + γ𝐶𝑆00) (1 − 𝑃𝑓,2)𝑃(𝐻0)

+ 2𝐵0 log(1 + γ𝐶𝑆01) 𝑃𝑚,01𝑃(𝐻0)𝑃(𝐻1)

+ 2𝐵0 log(1 + γ𝐶𝑆10) 𝑃𝑚,10𝑃(𝐻1)𝑃(𝐻0)

+ 2𝐵0 log(1 + γ𝐶𝑆11) 𝑃𝑚,11𝑃(𝐻1)𝑃(𝐻1)                                                          (𝟐. 𝟔) 

Note that in the first term of equation (2.6), the probability of correct sensing 

is 𝑃(𝐻0), since the idle probability for single channel is 𝑃(𝐻0), and the average amount of 
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channel available given the S channels is S𝑃(𝐻0). Notations γ𝐶𝑆𝑥𝑥 are the signal to noise 

ratio from CR and received at secondary user (SU), ′𝑥′ can to replace by digit 0 (PU inactive) 

or 1 (PU active). And the descriptions for SINR from CR to SR are shown below: 

{
 
 
 
 

 
 
 
 γ𝐶𝑆00 =

𝑃𝐶𝑆
ℎ

2𝑁0𝐵0
 (𝑆𝑁𝑅 𝑓𝑟𝑜𝑚 𝐶𝑅 𝑡𝑜 𝑆𝑈 𝑤ℎ𝑒𝑛 𝑏𝑜𝑡ℎ 𝑃𝑈𝑠 𝑎𝑟𝑒 𝑖𝑑𝑙𝑒)                        

γ𝐶𝑆01 =
𝑃𝐶𝑆
ℎ

2𝑁0𝐵0 + 𝑃𝑃
ℎ  (𝑆𝐼𝑁𝑅 𝑓𝑟𝑜𝑚 𝐶𝑅 𝑡𝑜 𝑆𝑈, 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑃𝑈. )

γ𝐶𝑆10 =
𝑃𝐶𝑆
ℎ

2𝑁0𝐵0 + 𝑃𝑃
ℎ (𝑆𝐼𝑁𝑅 𝑓𝑟𝑜𝑚 𝐶𝑅 𝑡𝑜 𝑆𝑈, 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑃𝑈. )

γ𝐶𝑆11 =
𝑃𝐶𝑆
ℎ

2𝑁0𝐵0 + 2𝑃𝑃
ℎ
(𝑆𝐼𝑁𝑅 𝑓𝑟𝑜𝑚 𝐶𝑅 𝑡𝑜 𝑆𝑈, 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑑 𝑏𝑦 2 𝑃𝑈)                

 

The first term on the right hand side of equation (2.6) is the throughput under correct 

detection given both PUs are idle. The second term is the throughput under misdetection 

given PU1 is idle and PU2 is active. The third term is the throughput under misdetection 

given PU1 is active and PU2 is idle. And the last term is the throughput under misdetection 

given both PUs are active. 

Assume frame time (𝑇𝐹) is 1 second, and sensing time plus transmission time equals 

frame time: 𝑇𝐹 = 𝑇𝑆 + 𝑇𝑇 . The energy efficiency when there are 2 PUs is: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝑜𝑛𝑒 𝑓𝑟𝑎𝑚𝑒

=
𝑇𝑇 (2𝐵0 log(1 + γ𝐶𝑆00) (1 − 𝑃𝑓,2)𝑃(𝐻0) + 2𝐵0 log(1 + γ𝐶𝑆01) 𝑃𝑚,01𝑃(𝐻0)𝑃(𝐻1))

𝑃𝑠TS + 𝑃𝑇𝑇𝑇 + 𝑃𝐶(𝑇𝑆 + 𝑇𝑇)

+
𝑇𝑇(2𝐵0 log(1 + γ𝐶𝑆10) 𝑃𝑚,10𝑃(𝐻1)𝑃(𝐻0) + 2𝐵0 log(1 + γ𝐶𝑆11) 𝑃𝑚,11𝑃(𝐻1)

2)

𝑃𝑠TS + 𝑃𝑇𝑇𝑇 + 𝑃𝐶(𝑇𝑆 + 𝑇𝑇)
          (𝟐. 𝟕) 
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One Cognitive Radio with Multiple PUs 

       When there are 𝑆 PUs nearby and all PU uses disjoint channel with same bandwidth 𝐵0. 

Then in the case of misdetection, the status of PUs can be from one of them is active to all of 

them are active. Which can be described as: 

{
 
 

 
 
𝐻0..01   𝑃𝑈(1)…𝑃𝑈(𝑆 − 1) 𝑎𝑟𝑒 𝑖𝑑𝑙𝑒, 𝑜𝑛𝑙𝑦 𝑃𝑈(𝑆) 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒                             − −(1 𝑃𝑈 𝑎𝑐𝑡𝑖𝑣𝑒)

𝐻0..10   𝑃𝑈(1)…𝑃𝑈(𝑆 − 2), 𝑃𝑈(𝑟) 𝑎𝑟𝑒 𝑖𝑑𝑙𝑒, 𝑜𝑛𝑙𝑦 𝑃𝑈(𝑆 − 1) 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒        − −(1 𝑃𝑈 𝑎𝑐𝑡𝑖𝑣𝑒)
⋮

𝐻0..11   𝑃𝑈(1)…𝑃𝑈(𝑆 − 2) 𝑎𝑟𝑒 𝑖𝑑𝑙𝑒, 𝑃𝑈(𝑆 − 1) 𝑎𝑛𝑑 𝑃𝑈(𝑆) 𝑎𝑟𝑒 𝑎𝑐𝑡𝑖𝑣𝑒    − −(2 𝑃𝑈𝑠 𝑎𝑐𝑡𝑖𝑣𝑒)
⋮

𝐻1..11    𝑃𝑈(1)…𝑃𝑈(𝑆)𝑎𝑟𝑒 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑣𝑒                                                                − −(𝑎𝑙𝑙 𝑃𝑈𝑠 𝑎𝑐𝑡𝑖𝑣𝑒)

 

       In general, the total amount of 1 PU active cases is (
𝑆
1
) =

𝑆!

(𝑆−1)!1!
= 𝑛; in which (

𝑎
𝑏
) 

represents 𝑏 -combinations of a set 𝑛. Similarly, the total amount of 2 PUs active cases 

is (
𝑆
2
) =

𝑆!

(𝑆−2)!2!
. And so on for 𝑛 PUs are active, which is (

𝑆
𝑆
) = 1. 

       Next, we derive misdetection probability when there are 𝑆 PUs nearby. The general 

expression for misdetection probability when there are 𝑟 PUs is: 𝑃𝑚,𝑆 = 𝑃(ℋ0 ̂ |ℋ1) =

𝑃(ℋ0̂,ℋ1)

𝑃(ℋ1)
, and for the numerator: 

𝑃(ℋ0̂,ℋ1) = 𝑃(ℋ0̂⋂(𝐻0…01…⋃𝐻0…11…⋃𝐻1…11)) 

           = 𝑃[(ℋ0̂⋂𝐻0…01) + ⋯+ (ℋ0̂⋂𝐻0…11) + ⋯+ (ℋ0̂⋂𝐻1…11)] 

Since the rest of the term contains mutually exclusive events, we have 

(ℋ0̂⋂𝐻0…01⋂𝐻0…11) = ⋯ = (ℋ0̂⋂𝐻0…01⋂…⋂𝐻0…11⋂𝐻1…11) = ∅ 

There are (
𝑆
1
) = 𝑆 cases when 1 PU is active, (

𝑆
2
) cases when 2 PUs are active and in 

general, (
𝑆
𝑘
) cases when 𝑘 PUs are active. We then have for 𝑘 PUs active:  

𝑃 (ℋ0̂⋂𝐻0…1⏟
𝑘 1𝑠

) = (𝑃 (ℋ0̂|𝐻00..1..1⏟
𝑘 1𝑠

) +⋯+ 𝑃 (ℋ0̂|𝐻1..1⏟0..0
𝑘 1𝑠

)) × 𝑃(𝐻0)
𝑆−𝑘𝑃(𝐻1)

𝑘
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Note that: 

𝑃 (ℋ0̂|𝐻00..1..1⏟
𝑘 1𝑠

) = ⋯ = 𝑃 (ℋ0̂|𝐻1..1⏟0..0
𝑘 1𝑠

) = 1 − 𝑄𝑆𝑇𝑆𝐵0 (√2
𝑘𝑃𝑃

ℎ

𝑆𝑁0𝐵0
, √λ) 

Therefore, we have: 

 𝑃(ℋ0̂⋂𝐻0…1⏟
𝑘 1𝑠

)

= 𝑃(𝐻0)
𝑆−𝑘𝑃(𝐻1)

𝑘 [

(

 1 − 𝑄𝑆𝑇𝑆𝐵0 (
√2

𝑘𝑃𝑃
ℎ

𝑆𝑁0𝐵0
,√λ)

)

 +⋯+

(

 1 − 𝑄𝑆𝑇𝑆𝐵0 (
√2

𝑘𝑃𝑃
ℎ

𝑆𝑁0𝐵0
,√λ)

)

 ]

⏟                                                  

𝑡𝑜𝑡𝑎𝑙𝑙𝑦 (𝑆
𝑘
) 𝑡𝑒𝑟𝑚𝑠 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑡𝑒𝑟𝑚 𝑖𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑤𝑖𝑡ℎ 𝑜𝑛𝑒 𝑎𝑛𝑜𝑡ℎ𝑒𝑟

 

= (
𝑆
𝑘
)𝑃(𝐻0)

𝑆−𝑘𝑃(𝐻1)
𝑘 [1 − 𝑄𝑆𝑇𝑆𝐵0 (√2

𝑘𝑃𝑃
ℎ

𝑆𝑁0𝐵0
, √λ)] 

Hence, when there are 𝑆 PUs nearby, the numerator of equation (2.1) is:  

       𝑃(ℋ0̂,ℋ1) = (
𝑆
1
)𝑃(𝐻0)

𝑆−1𝑃(𝐻1) [1 − 𝑄𝑆𝑇𝑆𝐵0 (
√2

𝑃𝑃
ℎ

𝑆𝑁0𝐵0
,√λ)]

+ (𝑆
2
)𝑃(𝐻0)

𝑆−2𝑃(𝐻1)
2 [1 − 𝑄𝑆𝑇𝑆𝐵0 (

√2
2𝑃𝑃

ℎ

𝑆𝑁0𝐵0
,√λ)] 

                                                                                                       + 

                                                                                                        ⋮ 

                                                                                                       + 

                              + (
𝑆
𝑆
) 𝑃(𝐻0)

𝑆−𝑆𝑃(𝐻1)
𝑆 [1 − 𝑄𝑆𝑇𝑆𝐵0 (√2

𝑃𝑃
ℎ

𝑁0𝐵0
, √λ)]

= ∑(
𝑆
𝑘
)𝑃(𝐻0)

𝑆−𝑘𝑃(𝐻1)
𝑘 [1 − 𝑄𝑆𝑇𝑆𝐵0 (√2

𝑘𝑃𝑃
ℎ

𝑆𝑁0𝐵0
, √λ)]

𝑆

𝑘=1
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We let: 𝑃𝑚,𝑆,𝑘 = 1 − 𝑄𝑆𝑇𝑆𝐵0 (√2
𝑘𝑃𝑃

ℎ

𝑆𝑁0𝐵0
, √λ) , which is the misdetection probability 

when 𝑘 out of 𝑆 PU is (are) active. And Let: 

𝑃(ℋ0̂,ℋ1,𝑘) = (
𝑆
𝑘
)𝑃(𝐻0)

(𝑆−𝑘)𝑃(𝐻1)
𝑘  [1 − 𝑄𝑆𝑇𝑆𝐵0 (√2

𝑘𝑃𝑃
ℎ

𝑆𝑁0𝐵0
, √λ)] 

We then have for 𝑆 PUs, misdetection probability can be described as:  

𝑃𝑚,𝑆 =
𝑃(ℋ0̂,ℋ1)

𝑃(ℋ1)
=
𝑃(ℋ0̂,ℋ1,1) + 𝑃(ℋ0̂,ℋ1,2) + ⋯+ 𝑃(ℋ0̂, ℋ1,𝑆)

1 − 𝑃(𝐻0)𝑆

=
∑ (

𝑆
𝑘
)𝑃𝑚,𝑆,𝑘𝑃(𝐻0)

(𝑆−𝑘)𝑃(𝐻1)
𝑘𝑆

𝑘=1

1 − 𝑃(𝐻0)𝑆
                                                               (𝟐. 𝟖) 

Similarly to Equation (2.5), false alarm probability for 𝑟 PUs is: 

𝑃𝑓,𝑆 = 𝑃(ℋ1 ̂ |ℋ0) =
𝛤(𝑆𝑇𝑠𝐵0,

𝜆
2)

𝛤(𝑆𝑇𝑠𝐵0)
                                                                                                (𝟐. 𝟗) 

 

Channel Capacities and Energy Efficiency with Multiple PUs 

According to Equation (2.6) and Part 4, the total Channel Capacity when there are 

𝑆 PUs is shown below: 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑆 𝑃𝑈𝑠)

=  𝑆𝐵0 (log (1 +
𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0
) (1 − 𝑃𝑓,𝑆)𝑃(𝐻0)

+ (
𝑆
1
) log (1 +

𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0 + 𝑃𝑃
ℎ)𝑃𝑚,𝑆,1𝑃(𝐻0)

𝑆−1𝑃(𝐻1)

+ (
𝑆
2
) log (1 +

𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0 + 2𝑃𝑃
ℎ)𝑃𝑚,𝑆,2𝑃(𝐻0)

𝑆−2𝑃(𝐻1)
2   + ⋯

+ (
𝑆
𝑆
) log (1 +

𝑃𝐶𝑆
ℎ

𝑆(𝑁0𝐵0 + 𝑃𝑃
ℎ)
)𝑃𝑚,𝑆,𝑆𝑃(𝐻0)

𝑆−𝑆𝑃(𝐻1)
𝑆)    
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                         = 𝑆𝐵0 (log(1 +
𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0
) (1 − 𝑃𝑓,𝑆)𝑃(𝐻0)

+∑ (
𝑆
𝑘
) log (1 +

𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0 + 𝑘𝑃𝑃
ℎ)𝑃𝑚,𝑆,𝑘𝑃(𝐻0)

𝑆−𝑘𝑃(𝐻1)
𝑘

𝑆

𝑘=1

)                   (𝟐. 𝟏𝟎) 

 

In general, when CR transmission time is 𝑇𝑇 , energy efficiency of the CR network, 

when there are 𝑆 PUs, is: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑇 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑛𝑒 𝑓𝑟𝑎𝑚𝑒

= 𝑇𝑇𝑆𝐵0

(

 
 
log(1 +

𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0
) (1 − 𝑃𝑓,𝑆)𝑃(𝐻0) + ∑ (

𝑆
𝑙
) log (1 +

𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0 + 𝑙𝑃𝑃
ℎ)𝑃𝑚,𝑆,𝑙𝑃(𝐻0)

𝑆−𝑙𝑃(𝐻1)
𝑙𝑆

𝑙=1

𝑃𝑠TS + 𝑃𝑇𝑇𝑇 + 𝑃𝐶(TS + 𝑇𝑇)

)

 
 
   

(𝟐. 𝟏𝟏) 

 

Setting Misdetection Threshold on CRs 

In order to protect PU transmission and avoid excessive interference by CR 

transmission, we need to set a misdetection threshold 𝜖𝑚. 

When there are 𝑆 PUs in the sensing environment, the misdetection threshold should 

be able to protect each PU, and we assume each are protected with same misdetection 

threshold. Therefore, we have to make sure that the no matter how many PUs are active, 

misdetection probability has to always less than or equals to the preset misdetection 

threshold 𝜖𝑚. Or: 

{

𝑃𝑚,𝑆,1 ≤ 𝜖𝑚
𝑃𝑚,𝑆,2 ≤ 𝜖𝑚

⋮
𝑃𝑚,𝑆,𝑆 ≤ 𝜖𝑚

 

Next, we look at the misdetection for 𝑆 PUs when 𝑘 of them are active 𝑃𝑚,𝑆,𝑘: 



www.manaraa.com

30 

 

 

𝑃𝑚,𝑆,𝑘 = 1 − 𝑄𝑆𝑇𝑆𝐵0 (√2
𝑘𝑃𝑃

ℎ

𝑆𝑁0𝐵0
, √λ)                                                                                     (𝟐. 𝟏𝟐) 

 

As we can see from above, when the number of active PU (𝑘) increases, term 

√2
𝑘𝑃𝑃

ℎ

𝑆𝑁0𝐵0
 increases and 𝑄𝑆𝑇𝑆𝐵0 (√2

𝑘𝑃𝑃
ℎ

𝑆𝑁0𝐵0
, √λ) increases, which leads to decrease in 

misdetection probability. Therefore; misdetection probability decreases as the amount of 

active PU increase: 𝑃𝑚,𝑆,𝑘 ≥ 𝑃𝑚,𝑆,𝑘+1. Intuitively thinking, as more PU are active, CR will 

receive a stronger signal which leads to a decrease in sensing error probability. Moreover, we 

can see that for given 𝑆 PUs, we can assure misdetection probability is below preset 

misdetection threshold 𝜖𝑚 if the misdetection probability of 1 PU active is below 𝜖𝑚: 

𝑖𝑓:        𝑃𝑚,𝑆,1 = 1 − 𝑄𝑆𝑇𝑆𝐵0 (√2
𝑃𝑃
ℎ

𝑆𝑁0𝐵0
, √𝜆) ≤ 𝜖𝑚  

𝑡ℎ𝑒𝑛:      𝑃𝑚,𝑆,𝑘 = 1 − 𝑄𝑆𝑇𝑆𝐵0 (√2
𝑘𝑃𝑃

ℎ

𝑆𝑁0𝐵0
, √λ) ≤ 𝜖𝑚      𝑓𝑜𝑟 𝑘 ∈ 1,2, . . . , 𝑆 

Next, we look at the simulation of 𝜖𝑚, which is the misdetection probability of one 

PU active while the rest are idle: 

As we can see from Figure 2.3 below, for given amount of PUs, misdetection 

probability increases as preset detection threshold of each sample 
𝜆

2𝑇𝑠𝐵
 increases (we use 

𝜆

2𝑇𝑠𝐵
 

since it is more understandable, for example, 
𝜆

2𝑇𝑠𝐵
= 1.5 means we set detection threshold to 

be 1.5 times noise power). Intuitively thinking, the decrease of detection threshold is 

equivalent to increase CR sensing sensitivity.  
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Figure 2.3: Misdetection Probability vs Detection Threshold of Each Sample 

Next, we derive the relation between misdetection and detection threshold of each 

sample. Following Chapter II section 4 and considering channel error probability, we have: 

𝜆 ≤ 𝑛𝑐𝑥2𝑖𝑛𝑣 (𝜖𝑚, 𝑆TS𝐵, 𝑆TS𝐵
𝑃𝑃
ℎ

𝑆𝑁0𝐵0
)                                                                                  (𝟐. 𝟏𝟑)  

Note that 𝐾 is the number of CR and 𝑘 is the number of active PU. 

According to equation (2.9) and (2.11), for a given false alarm probability, in order to 

increase channel capacity and energy efficiency, we need to increase misdetection 

probability. Furthermore, for a fixed misdetection probability, in order to increase channel 

capacity and energy efficiency, we should decrease false alarm probability. From equation 

(2.9), we can easily see that in order to decrease false alarm probability, we should 

maximize 𝜆. Therefore, 𝜆 should be maximized in order to maximize energy efficiency (in 

the meanwhile, misdetection probability, as a function of 𝜆, should also equals to or less than 

preset misdetection threshold 𝜖𝑚).  
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In general; for a given number of PUs, maximal energy efficiency is achieved when  

𝜆𝑜𝑝𝑡 = 𝑛𝑐𝑥2𝑖𝑛𝑣 (𝜖𝑚, 𝑆TS𝐵, 𝑆TS𝐵
𝑃𝑃
ℎ

𝑆𝑁0𝐵0
)                                                                              (𝟐. 𝟏𝟒) 

 

Figure 2.4: Misdetection Threshold vs Detection Threshold of Each Sample 

Next, we generate and plot maximal energy efficiency for given misdetection 

threshold with different number of sensing channels (each channel with 100 KHz 

bandwidth). As shown in Fig.8 below, we calculated maximal energy efficiency given 

numbers of PUs under the constraint of preset misdetection threshold, in order to protect PU. 
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Figure. 2.5: Maximal Energy Efficiency vs Sensing Bandwidth (single CR) 

 

Figure 2.5 above shows achievable Maximal Energy Efficiency for different amount 

of PUs. Furthermore, the figure shows that amount 0 to 10 PUs, global maximal energy 

efficiency point is at when there are 4 PUs, with highest misdetection threshold (in this 

case, 𝜖𝑚 = 0.4) 

 

‘OR’ Fusion Rule with 𝐾 CRs and 𝑆 PUs 

When there are 𝐾 CRs in the network, assume they are all identical and have same 

misdetection and false alarm probability given in the same sensing environment, for ‘OR’ 

rule we have: 

𝑄𝑓,𝑆 = 1 − (1 − 𝑃𝑓,𝑆
e )

𝐾
   

𝑄𝑚,𝑆,𝑘 = (𝑃𝑚,𝑆,𝑘
e )𝐾 ≤ ϵm

                                                                                                            (𝟐. 𝟏𝟓) 
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In which 𝑃𝑓,𝑆
e  is false alarm probability and 𝑃𝑚,𝑆,𝑘

e  is misdetection probability when 𝑘 

out of 𝑆 PU are active, and superscript e means we are considering reporting channel error 

probability. In which: 

{
𝑃𝑓,𝑆
e = 𝑃𝑓,𝑆(1 − 𝑃𝑒) + 𝑃𝑒(1 − 𝑃𝑓,𝑆)           

𝑃𝑚,𝑆,𝑘
e = 𝑃𝑚,𝑆,𝑘(1 − 𝑃𝑒) + 𝑃𝑒(1 − 𝑃𝑚,𝑆,𝑘)

                                                                              (𝟐. 𝟏𝟔)     

 Correspondently, 𝑄𝑓,𝑆 is network false alarm probability; 𝑄𝑚,𝑆,𝑘 is misdetection 

probability at DFC when 𝑘 out of 𝑆 PU are active. ϵm is misdetection threshold. Next, we 

have the expression for energy efficiency of 1 PU under cooperative sensing environment: 

And the energy efficiency for such network is: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑇 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑛𝑒 𝑓𝑟𝑎𝑚𝑒

= 𝑇𝑇𝑆𝐵0

(

 
 
log (1 +

𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0
) (1 − 𝑄𝑓,𝑆)𝑃(𝐻0) + ∑ (

𝑆

𝑙
) log (1 +

𝑃𝐶𝑆
ℎ

𝑆𝑁0𝐵0 + 𝑙𝑃𝑃
ℎ)𝑄𝑚,𝑆,𝑙𝑃(𝐻0)

𝑆−𝑙𝑃(𝐻1)
𝑙𝑆

𝑙=1

𝑃𝑇𝑇𝑇 + (𝑃𝑠TS + 𝑃𝐶(TS + 𝑇𝑇)) × 𝐾

)

 
 

 

    (𝟐. 𝟏𝟕)  

 Note that sensing power in this case is calculated using equation (2.18) below: 

𝑃𝑆 = 𝑁 × 0.0028 × (
2𝑆𝐵0
103

)
1.0227

(μ𝑊)                                                                                  (𝟐. 𝟏𝟖) 

 

Case Study: ‘AND’ Fusion Rule with 𝑘 CRs and 𝑆 PUs 

Similar as ‘OR’ fusion rule, for ‘AND’ fusion rule with 𝐾 CRs and 𝑆 PUs, we have: 

  {
𝑄𝑓,𝑆 = (𝑃𝑓,𝑆

e )𝐾                                

𝑄𝑚,𝑆,𝑘 = 1 − (1 − 𝑃𝑚,𝑆,𝑘
e )𝐾 ≤ ϵm

                                                                                          (𝟐. 𝟏𝟗)  

 And the energy efficiency expression for AND fusion rule is same as the energy 

efficiency for OR fusion rule. 
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Note that when we are using cooperative sensing, we only need to ensure that the 

network misdetection probability to be equal or less than misdetection threshold: 𝑄𝑚 ≤ ϵm, 

since the final decision is given by DFC. 

Refer to section 5 from this chapter, we have: 

𝑖𝑓:        𝑃𝑚,𝑆,1 = 1 − 𝑄𝑆𝑇𝑆𝐵0 (√2
𝑃𝑃
ℎ

𝑆𝑁0𝐵0
, √𝜆) ≤ 𝜖𝑚  

𝑡ℎ𝑒𝑛:      𝑃𝑚,𝑆,𝑘 = 1 − 𝑄𝑆𝑇𝑆𝐵0 (√2
𝑘𝑃𝑃

ℎ

𝑆𝑁0𝐵0
, √λ) ≤ 𝜖𝑚      𝑓𝑜𝑟 𝑘 ∈ 1,2, . . . , 𝑆   

Similarly for cooperative sensing case, since 𝑄𝑚,𝑆,𝑘 monotone increases as 𝑃𝑚,𝑆,𝑘
e  

increases, we have: 

𝑖𝑓:        𝑄𝑚,𝑆,1 = 1 − (1 − 𝑃𝑚,𝑆,1
e )

𝐾
≤ 𝜖𝑚  

𝑡ℎ𝑒𝑛:      𝑄𝑚,𝑆,𝑘 = 1 − (1 − 𝑃𝑚,𝑆,𝑘
e )

𝐾
≤ 𝜖𝑚      𝑓𝑜𝑟 𝑘 ∈ 2, . . . , 𝑆 

By using misdetection threshold on each CR instead of for the network, we have: 

𝑃𝑚,𝑆,1 =
𝑃𝑚,𝑆,1
𝑒 − 𝑃𝑒
1 − 2𝑃𝑒

≤
1 − (1 −  ∈𝑚)

(
1
𝐾
) − 𝑃𝑒

1 − 2𝑃𝑒
                                                                       (𝟐. 𝟐𝟎) 

In which the rightmost term is misdetection threshold at each CR. 

 And as we described above, by maximizing detection threshold 𝜆, we can maximize 

misdetection probability while minimize false alarm probability. In cooperative sensing case, 

we have: 

𝜆𝑜𝑝𝑡 = 𝑛𝑐𝑥2𝑖𝑛𝑣 (
1 − (1 −  ∈𝑚)

(
1
𝐾
)
− 𝑃𝑒

1 − 2𝑃𝑒
, 𝑆TS𝐵, 𝑆TS𝐵

𝑃𝑃
ℎ

𝑆𝑁0𝐵0
)                                        (𝟐. 𝟐𝟏) 

 After finding the optimal detection threshold, we can calculate network false alarm 

and misdetection probability using equation (2.9), (2.12), (2.16), and (2.19); and use equation 

(2.17) to calculate energy efficiency of the CR network. 
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 By using the same parameters presented in chapter II, we can plot energy efficiency 

vs number of sensing channels vs number of coop CR in Figure 2.6 a and b: 

 

Figure 2.6a: Energy Efficiency vs Number of Sensing Channels vs Number of CRs 

 

 

Figure 2.6b: Energy Efficiency vs Number of CRs (AND Fusion Rule, 10 channels) 
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Figure 2.6 c: Energy Efficiency vs Number of CR with Changing 𝑃(𝐻1) ( ∈𝑚= 0.1, 𝑆 = 5) 

 

Note that sensing bandwidth equals to number of channels times 100 KHz, in which 

each channel is 100 KHz. By comparing figure 2.6 a and b above with figure 1.5 a and b 

from chapter 2, we can see that channel sensing method does affects overall energy 

efficiency of the network. The comparison shows that sensing single channel with changing 

bandwidth can achieve higher energy efficiency than sensing multiple channels that each 

with same bandwidth. Moreover, as we increase misdetection threshold, both sensing method 

shows there is an increase in energy efficiency. 

In Chapter II and III, we studied different fusion rules, different sensing methods and 

focused more on ‘AND’ fusion rule for its ability to maximize misdetection probability while 

minimizing false alarm probability for a given amount of CR. Also, we studied on setting 

misdetection threshold in order to protect PU from CR transmission interference. The case 

study shows that we can achieve maximal energy efficiency while ensuring the protection of 

PU in a given environment.  
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CHAPTER V 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

 

 CR network can uses radio spectrum more efficiently because of its ability to search 

for idle spectrum and access it opportunistically in order to transmit its own data The study in 

this thesis was to explore the methods to maximize energy efficiency of the CR network in 

order to enable green wireless network; Therefore, we can make CR network both spectrum 

efficient and energy efficient.  

In Chapter II, we proved that for a given number of CR, AND fusion rule can 

maximize energy efficiency. And in Chapter II and III, two different sensing schemes are 

presented, the first one is to sensing single channel which the bandwidth can be varied, and 

the next sensing scheme is to sense multiple channels and assume each channel has same 

bandwidth. Furthermore, we studied about setting misdetection threshold on each CR in 

order to protect primary user from excessive interference by CR. The case study results show 

that by presetting misdetection probability and sensing bandwidth, there exist a maximal 

energy efficiency point. And sensing single channel with varying bandwidth can be more 

energy efficient than sensing multiple channel slots each with same bandwidth.  

 Future study on this topic can be to find the optimal sensing time, transmission time 

or CR transmission power. In addition, more spectrum survey can be conducted in other 

cities all around the world. 
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